Sarcoma UK Janet Shipley
Principal Investigators: 

ProfessorJanet Shipley, Dr Zoe Walters, and Dr Edoardo Missiaglia

Award Amount: 
£23,266
Duration: 
1 year

Deaths from cancer in children are, thankfully, rare. However, a leading cause of cancer related deaths in children is rhabdomyosarcoma, a soft tissue sarcoma. More effective treatments are urgently required and Dr Shipley proposed that increased understanding of the underlying molecular mechanisms in development and spread of rhabdomyosarcoma would yield new angles for investigation. 

They found some new gene targets which look as if they could be promising ‘ways in’ to researching new treatments. Whilst there is still a very long way to go these are now being investigated further in their laboratory or will form the basis of future research.

In particular, she and her team were studying what can make rhabdomyosarcoma such an aggressive cancer. 

 

About the Project

Genes produce messages which are usually converted into protein molecules. These then perform specific tasks inside the cells that make up the body.

In cancer, genes may produce too many, not enough or even the wrong messages. This inevitably disrupts previously normal cell growth and development. A key change in some rhabdomyosarcomas is a rearrangement of two genes, fusing one gene - PAX3 with another gene - FOXO1. This PAX3-FOXO1 fusion gene, and the aberrant protein it makes from its garbled message, is associated with rhabdomyosarcoma cells that are more likely to spread and spread faster.

Recent research has shown that this fusion gene is frequently found with increased copies of another gene - MYCN. MYCN and the PAX3-FOXO1 co-operate to make rhabdomyosarcomas more aggressive. Unfortunately the PAX3-FOXO1 and MYCN proteins are not easy to get at in cells. This inaccessibility means they are not what scientists are looking for as promising targets for new therapeutic approaches.

However, other genes are also involved in supporting roles for PAX3-FOXO1 and MYCN genes. Dr Shipley reasoned it might be worth tackling them as they seem to play a part in creating the aggressive behavior of rhabdomyosarcoma.

The project’s aim was to identify the genes that help promote aggression of the PAX3-FOXO1 and MYCN genes. The team termed these genes in supporting roles "effector" genes. Dr Shipley assessed those she could find and proposed, if appropriate, to make them the subject of subsequent studies. She would be determining their potential as new molecular therapeutic targets with the hope they would lead to new treatments. 

The results of this successful study are currently being prepared for publication. One of the genes identified is already under intensive investigation in order to develop a therapeutic approach against it (in collaboration with the Centre for Cancer Therapeutics at The Cancer Research Institute). 

Project status: 
completed